Neutron portal to ultra-high energy neutrinos

Published:

Current data on ultra-high-energy (UHE) cosmic rays suggest they are predominantly made of heavy nuclei. This indicates that the flux of neutrinos produced from proton collisions on the cosmic microwave background is small and hard to observe. Motivated by the recent extremely-high-energy muon event reported by KM3NeT, we explore the possibility of enhancing the energy-flux of cosmogenic neutrinos through nuclear photodisintegration in the presence of new physics. Specifically, we speculate that UHE neutrons may oscillate into a new state, dark (or mirror) neutron \(n'\) that in turn decays injecting large amount of energy to neutrinos, \(n \to n' \to \nu_{\text{UHE}}\). While this mechanism does not explain the tension between the KM3NeT event and null results from IceCube, it reconciles the experimental preference for a heavier cosmic ray composition with a large diffuse cosmogenic flux of UHE neutrinos.